Skip to main content
Log in

Genome of the candidate phylum Aminicenantes bacterium from a deep subsurface thermal aquifer revealed its fermentative saccharolytic lifestyle

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Bacteria of candidate phylum OP8 (Aminicenantes) have been identified in various terrestrial and marine ecosystems as a result of molecular analysis of microbial communities. So far, none of the representatives of Aminicenantes have been isolated in a pure culture. We assembled the near-complete genome of a member of Aminicenantes from the metagenome of the 2-km-deep subsurface thermal aquifer in Western Siberia and used genomic data to analyze the metabolic pathways of this bacterium and its ecological role. This bacterium, designated BY38, was predicted to be rod shaped, it lacks flagellar machinery but twitching motility is encoded. Analysis of the BY38 genome revealed a variety of glycosyl hydrolases that can enable utilization of carbohydrates, including chitin, cellulose, starch, mannose, galactose, fructose, fucose, rhamnose, maltose and arabinose. The reconstructed central metabolic pathways suggested that Aminicenantes bacterium BY38 is an anaerobic organotroph capable of fermenting carbohydrates and proteinaceous substrates and performing anaerobic respiration with nitrite. In the deep subsurface aquifer Aminicenantes probably act as destructors of buried organic matter and produce hydrogen and acetate. Based on phylogenetic and genomic analyses, the novel bacterium is proposed to be classified as Candidatus Saccharicenans subterraneum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albertsen M, Hugenholtz P, Skarshewski A, Nielsen KL, Tyson GW, Nielsen PH (2013) Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat Biotechnol 31:533–538

    Article  CAS  PubMed  Google Scholar 

  • Alneberg J, Bjarnason BS, De Bruijn I, Schirmer M, Quick J, Ijaz UZ, Lahti L, Loman NJ, Andersson AF, Quince C (2014) Binning metagenomic contigs by coverage and composition. Nat Methods 11:1144–1146

    Article  CAS  PubMed  Google Scholar 

  • Anantharaman K, Brown CT, Hug LA, Sharon I, Castelle CJ, Probst AJ, Thomas BC, Singh A, Wilkins MJ, Karaoz U, Brodie EL, Williams KH, Hubbard SS, Banfield JF (2016) Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat Commun 7:13219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banks D, Frank Y, Kadnikov V, Karnachuk O, Watts M, Boyce A, Frengstad B (2014) Hydrochemical data report from sampling of two deep abandoned hydrocarbon exploration wells: Byelii Yar and Parabel’, Tomsk oblast’, western Siberia, Russian Federation. NGU Report, 2014.034. Geological Survey of Norway, Trondheim

    Google Scholar 

  • Bowers RM, Kyrpides NC, Stepanauskas R et al (2017) Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol 35:725–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, Olson R, Overbeek R, Parrello B, Pusch GD, Shukla M, Thomason JA 3rd, Stevens R, Vonstein V, Wattam AR, Xia F (2015) RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 5:8365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown CT, Olm MR, Thomas BC, Banfield JF (2016) Measurement of bacterial replication rates in microbial communities. Nat Biotechnol 34:1256–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, Delmont TO (2015) Anvi’o: an advanced analysis and visualization platform for ‘omics data. Peer J 3:e1319

    Article  PubMed  PubMed Central  Google Scholar 

  • Farag IF, Davis JP, Youssef NH, Elshahed MS (2014) Global patterns of abundance, diversity and community structure of the Aminicenantes (candidate phylum OP8). PLoS One 9:e92139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Federhen S (2012) The NCBI taxonomy database. Nucleic Acids Res 40:D136–D143

    Article  CAS  PubMed  Google Scholar 

  • Frischkorn KR, Stojanovski A, Paranjpye R (2013) Vibrio parahaemolyticus type IV pili mediate interactions with diatom-derived chitin and point to an unexplored mechanism of environmental persistence. Environ Microbiol 15:1416–1427

    Article  CAS  PubMed  Google Scholar 

  • Gies EA, Konwar KM, Beatty JT, Hallam SJ (2014) Illuminating microbial dark matter in meromictic Sakinaw Lake. Appl Environ Microbiol 80:6807–6818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greening C, Biswas A, Carere CR, Jackson CJ, Taylor MC, Stott MB, Cook GM, Morales SE (2016) Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J 10:761–777

    Article  CAS  PubMed  Google Scholar 

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    Article  CAS  PubMed  Google Scholar 

  • Hernsdorf AW, Amano Y, Miyakawa K, Ise K, Suzuki Y, Anantharaman K, Probst A, Burstein D, Thomas BC, Banfield JF (2017) Potential for microbial H2 and metal transformations associated with novel bacteria and archaea in deep terrestrial subsurface sediments. ISME J 11:1915–1929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hugenholtz P, Pitulle C, Hershberger KL, Pace NR (1998) Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol 180:366–376

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hunt DE, Gevers D, Vahora NM, Polz MF (2008) Conservation of the chitin utilization pathway in the Vibrionaceae. Appl Environ Microbiol 74:44–51

    Article  CAS  PubMed  Google Scholar 

  • Hutcheson SW, Zhang H, Suvorov M (2011) Carbohydrase systems of Saccharophagus degradans degrading marine complex polysaccharides. Mar Drugs 9:645–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadnikov VV, Mardanov AV, Beletsky AV, Banks D, Pimenov NV, Frank YA, Karnachuk OV, Ravin NV (2018) A metagenomic window into the 2-km-deep terrestrial subsurface aquifer revealed multiple pathways of organic matter decomposition. FEMS Microbiol Ecol 94(10):fiy152. https://doi.org/10.1093/femsec/fiy152

    Article  CAS  Google Scholar 

  • Kim YJ, Lee HS, Kim ES, Bae SS, Lim JK, Matsumi R, Lebedinsky AV, Sokolova TG, Kozhevnikova DA, Cha SS, Kim SJ, Kwon KK, Imanaka T, Atomi H, Bonch-Osmolovskaya EA, Lee JH, Kang SG (2010) Formate-driven growth coupled with H2 production. Nature 467:352–355

    Article  CAS  PubMed  Google Scholar 

  • Konstantinidis KT, Rosselló-Móra R, Amann R (2017) Uncultivated microbes in need of their own taxonomy. ISME J 11:2399–2406

    Article  PubMed  PubMed Central  Google Scholar 

  • Magnabosco C, Ryan K, Lau MC, Kuloyo O, Lollar BS, Kieft TL, van Heerden E, Onstott TC (2016) A metagenomic window into carbon metabolism at 3 km depth in Precambrian continental crust. ISME J 10:730–741

    Article  CAS  PubMed  Google Scholar 

  • Mandlik A, Swierczynski A, Das A, Ton-That H (2008) Pili in Gram-positive bacteria: assembly, involvement in colonization and biofilm development. Trends Microbiol 16:33–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mardanov AV, Ravin NV, Svetlitchnyi VA, Beletsky AV, Miroshnichenko ML, Bonch-Osmolovskaya EA, Skryabin KG (2009) Metabolic versatility and indigenous origin of the archaeon Thermococcus sibiricus, isolated from a siberian oil reservoir, as revealed by genome analysis. Appl Environ Microbiol 75:4580–4588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J 17:10–12

    Article  Google Scholar 

  • Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 4:60

    Article  Google Scholar 

  • Nobu MK, Dodsworth JA, Murugapiran SK, Rinke C, Gies EA, Webster G, Schwientek P, Kille P, Parkes RJ, Sass H, Jørgensen BB, Weightman AJ, Liu WT, Hallam SJ, Tsiamis G, Woyke T, Hedlund BP (2016) Phylogeny and physiology of candidate phylum ‘Atribacteria’ (OP9/JS1) inferred from cultivation-independent genomics. ISME J 10:273–286

    Article  CAS  PubMed  Google Scholar 

  • Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA, Hugenholtz P (2018) A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 36:996–1004

    Article  CAS  PubMed  Google Scholar 

  • Probst AJ, Castelle CJ, Singh A, Brown CT, Anantharaman K, Sharon I, Hug LA, Burstein D, Emerson JB, Thomas BC, Banfield JF (2016) Genomic resolution of a cold subsurface aquifer community provides metabolic insights for novel microbes adapted to high CO2 concentrations. Environ Microbiol 19:459–474

    Article  CAS  PubMed  Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596 (Database issue)

    Article  CAS  PubMed  Google Scholar 

  • Rinke C, Schwientek P, Sczyrba A et al (2013) Insights into the phylogeny and coding potential of microbial dark matter. Nature 499:431–437

    Article  CAS  PubMed  Google Scholar 

  • Robbins SJ, Evans PN, Parks DH, Golding SD, Tyson GW (2016) Genome-centric analysis of microbial populations enriched by hydraulic fracture fluid additives in a coal bed methane production well. Front Microbiol 7:731

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-R LM, Konstantinidis KT (2016) The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Prepr 4:e1900v1. https://doi.org/10.7287/peerj.preprints.1900v1

    Article  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scigelova M, Crout DHG (1999) Microbial beta-N-acetylhexosaminidases and their biotechnological applications. Enzyme Microb Technol 25:3–14

    Article  CAS  Google Scholar 

  • Sharon I, Kertesz M, Hug LA, Pushkarev D, Blauwkamp TA, Castelle CJ, Amirebrahimi M, Thomas BC, Burstein D, Tringe SG, Williams KH, Banfield JF (2015) Accurate, multi-kb reads resolve complex populations and detect rare microorganisms. Genome Res 25:534–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorokin DY, Gumerov VM, Rakitin AL, Beletsky AV, Sinninghe Damsté JS, Mardanov AV, Ravin NV (2014) Genome analysis of Chitinivibrio alkaliphilus gen. nov., sp. nov., a novel extremely haloalkaliphilic anaerobic chitinolytic bacterium from the candidate phylum Termite Group 3. Environ Microbiol 16:1549–1565

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson K (2001) Preparation of genomic DNA from bacteria. Curr Protoc Mol Biol. https://doi.org/10.1002/0471142727.mb0204s56 (chapter 2: unit 2.4)

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was performed using the scientific equipment of the Core Research Facility ‘Bioengineering’ (Research Center of Biotechnology RAS) and supported by the Russian Science Foundation (Grant no. 14-14-01016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolai V. Ravin.

Ethics declarations

Conflict of interest

The authors confirm that this article content has no conflict of interest.

Additional information

Communicated by S. Albers.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 148 kb)

Supplementary material 2 (XLS 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadnikov, V.V., Mardanov, A.V., Beletsky, A.V. et al. Genome of the candidate phylum Aminicenantes bacterium from a deep subsurface thermal aquifer revealed its fermentative saccharolytic lifestyle. Extremophiles 23, 189–200 (2019). https://doi.org/10.1007/s00792-018-01073-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-018-01073-5

Keywords

Navigation